Using A KNN and MOG Based Algorithm for
Static Hand Posture Recognition

Abhishek Ranjan
aranjan@cs.toronto.edu
Department of Computer Science

University of Toronto,

Toronto, Canada.

Abstract

Several machine learning algorithms have been applied to the problem
of static hand posture recognition. K-nearesr neighbor (KNN) performs
very well in flexible posture recognition, but speed and memory require-
ments of the algorithm make it difficult to use in real time applications. In
this paper we propose an approach to speed up the KNN without chang-
ing its behavior. We use the mixture of gaussians (MOG) to model the
input training data and apply KNN on this model.

1 Introduction

The goal of static hand posture recognition is to classify the given hand posture data, rep-
resented by some features, into some predefined finite number of posture classes. Gesture
recognition is a similar problem of classifying dynamic hand gestures. The challenges in-
volved in these problems are to track hand positions accurately and classifying the data into
postures. Recent advances in the tracking technologies (Vicon, Flock of Birds, CyberGlove
etc.) and computer vision algorithms [3] (pages 1-4) have made it possible to get the hand
postures tracked quite accurately.

Several machine learning approaches have been applied to the problem of classifying the
posture/gesture data. In [5] (pages 3-6) neural nets have been used for posture recognition.
A vision based mixture model for pointing gesture recognition has been used in [2] (pages
1002-1005). [4] (pages 2-3) proposes an algorithm for the fundamental problem of clus-
tering the data for classification purposes and applies it to character recognition problem.
The system described in [6] (pages 283-284) uses PCA and Multiple Discriminant Analy-
sis for hand posture recognition. Most of these systems rely on vision based techniques for
tracking and do not perform well when postures are allowed to be very flexible. Allowing
flexibility in posture recognition results in various prototypes of a single posture. Depend-
ing on the subject’s choice and ease, various instances of a single posture can lie far apart
in the feature space. KNN algorithm has often been found to be successful and accurate in
such cases [1] (page 417). But KNN algorithm uses all the training data at test time which
makes it memory and time expensive. These time space requirements make the algorithm
difficult to be used in realtime posture recognition applications such as posture/gesture
based human computer interaction.

The nature of the flexible posture recognition problem suggests that various prototypes of
one posture can be modeled as different clusters belonging to the same class. Based on
these observations we propose an approach which combines KNN and clustering using
MOG. The idea is to create an approximate model of the training data by using a mixture
of gaussians at training time, and using KNN on this approximate model at test time. In
the following sections we describe our experimental set up and formalize our approach.
Further we analyze the results of the experiments and conclude.

2 Our approach

We define a set of postures as target classes and represent them in terms of some features.
Our MOG based system has been illustrated using the terms of this setup.

2.1 Gesture and feature selection

Our system recognizes 3 postures: Pointing, Stopping and Picking. They are the target
postures. These three postures are widely used in various human computer interaction
techniques. We allow these postures to be very flexible and natural so that they can suc-
cessfully be applied to a wide range of people and situations. Figure 1 shows some sample
prototypes of the postures on which our system was trained.

o A
b g &
L 5

Figure 1: Variations of pointing, stopping and picking postures shown in three rows respec-
tively

Based on these postures we created the feature v&ctor(x,,) with two components

1. Distance between thumb and index finger (namgd
2. Distance between index finger and middle finger (nam#éd

Figure 2 shows these two dimensions of the feature vector. This selection of feature vector
makes the problem independent of the orientation of the hand in 3D.

2.2 Data collection

We used Vicon motion tracking system for getting 3D data. In this system we calibrate
some infrared cameras to track some specific markers in 3D space. These markers are then
put on the object which is to be tracked. The system reconstructs the 3D co-ordinates of
the markers using various images taken by a bunch of cameras. In our experiments we
have used 3 such markers to track 3 fingers (thumb, index and middle). We extract features

Figure 2: Feature vectoY = (x1,x2)

from the raw data after which all data points lie in the 2D feature space described earlier.
The target valug belongs to the posture sft;, ¢z, ¢35}, where each of the; corresponds

to one of the three postures described earlier. For our experiments we collected 100 data
samples for each of the three postures. Figure 3 shows the data distribution. Different
posture data have been shown with different symbols.

20 —

80r a

70r -1

60~ 2 5

X2

50~ =

401 |
30+ A
Picking
20F + Pointing |
O Stopping
10 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 20

Figure 3: Data points in 2D feature space. 3 classes of data are shown using different
symbols

2.3 Algorithm

We describe our approach with respect to our experimental setup, but it can also be
generalized to other classification problems. We denote the set of target postures as
C = {c1,c9,c3}, Wherec; represents pointing posture; represents stopping ang
represents picking. We have input training datai3et {X;, X», ... X, }, where eachX;

is a 2D feature vector. The corresponding target value¥ate {y1,y2,...yn},y; € C.

The algorithm takes as inpii?, Y, two parameters, k£ and test points{t¢st. The output

is the test target valueg®*t. We further divide the input training data into three input
classesD, Dy, D3 whereD; = {X;|j € {1,2...,n},y; = ¢;}, which means that we
put all pointing posture data in the input cla3s, stopping posture data iR, and picking
posture data iD;. With these notations our approach can be described in the following
steps:

1. Training: Using EM algorithm we fit a mixture of gaussians to each of the
training classD;. In our experiments, during the training we find the parameters
of total 3r gaussians fitted to the training data. We represent this set of gaussians as
G ={Gp,1,Gp,2,-.-.Gp,+,GDy1,--.,GDyr,GDy1,s - - ., Gpyr }, WhereGp,
is jth gaussian fitted to training clags.

2. Testing: At test time we have a set 8f gaussians and a test data $8t,; =
{X1,..., Xm}. We find the distance matri/s, ., similar to that in KNN.
But in this case, instead of using Euclidean distance and all the training data
points we calculate Mahalanobis distanég (IV, x))* of each test data point from
each of the gaussians. Each entry of the distance mafrigan be defined as
M(i,7) = dn(Gi, X;),Gi € G, X, € Xyese. The use of Mahalanobis distance
takes care of the correlation between different features. Moreover, this allows
more general class boundaries such as ellipses and straight lines. In our experi-
ments we computedr distances for each data point. Now, for each test point,
we find k nearest gaussians in Mahalanobis sense. Each &f gla@ssians votes
for one of the target values, cs or ¢ which it belongs to. In the notation used
so far this means that a gaussidp, ; votes for target;. The algorithm outputs
the target value of the test point as the target value with the maximum number of
votes.

If the size of the input data setisthen at test time naive KNN calculatesdistances for

each of the test data point. Our approach calculatefistances for each data point.rifs
selected to be less thary3 then our approach certainly does less number of distance cal-
culations at the test time and requires smaller amount of memory. Finding an appropriately
small value ofr could be done using validation data.

3 Experimental studies and results

We analyzed the behavior of our approach and KNN on the posture data. We randomly
picked 60% data from each class for training, 20% for validation and 20% for testing. The
performance of KNN has been analyzed by varying the value of parametarfigure 4

for a fixed training set, training and validation errors have been plotted against various
values. We selected thevalue for the test time based on the validation error. Final test
error was found to be 5%.

In the MOG based approach, EM algorithm has been useditaéitissians to each of the
target class data. The number of gaussianand the KNN parametek, have been esti-
mated by using validation data set. We fitted 1, 2, 3 and 4 gaussians to each of the target
class data. Figure 6 shows different target classes with various gaussians (1 standard devi-
ation) fitted along with the data. We fix thevalue at training time and run our algorithm

on the validation set for various values/af Figure 5 shows the plot of this process. Each

of the plots in figure 5 has 4 curves. Each curve shows the error rate as a funckion of
value for a fixed number of gaussians (labels on the curves) fitted to each training class at
the training time. From left side plot in figure 5 we can see that one gaussiarnj is a

poor estimate of the whole class cluster because for vakiaadues the error rate is very

high. As ther value is increased, the performance improves. We can expect it to behave

"Mahalanobis distanag,, (N, x) of a vectorz from a gaussiaiV (11, 2) is (z —)2~ (@ —) 7.

100 : : 100
80 80
g s
g 60 4 6o
2 s
€ 3
E 4 5 40
X X
20 20 J
O L L O L L
0 10 20 30 40 50 0 10 20 30 40 50

Kvalues K values

Figure 4: KNN training error (left) and validation error (right) plotted agaisalue

100

o
[=1

©
351

©

(=]
©
{=1

@®
S O
<3
(=

% Error (validation)
% Error (Test)

i
23]

70
70

65 60

60) / .
. ,,/ 4 Guassians
55 L A4 L L 50
1 2 3 4 5 6 7 8

Kvalues

Figure 5: Validation error (left) and test error (right) plotted againsalues for different
number of gaussiang {ralues) fitted to the data. Solid, dotted, dash-dot and dash-dash

represent 1,2,3 and 4 gaussians respectively.

similar to the KNN as the value approaches the number of data points in the target data
class. The plots in figure 5 and 4 show that for a fixed number of gaussians and Varying
value the behavior of our approach is similar to that of KNN. Using the validation data set
we estimate the value of the parameteendr. In our experiments we got the best results
with r = 4 andk = 4. The test error plots for various fitted gaussians and vargihgve
been shown in the plot on the right side in figure 5.

4 Conclusion and Future Directions

The success of KNN in classifying data has motivated several attempts to speed up the
KNN algorithm without losing its accuracy. In this paper we proposed an approach based

on mixture of gaussians to speed up the KNN algorithm. Depending on the parameters, the
behavior of our algorithm has been found to be similar to that of KNN.

The success rate of our approach depends heavily on fitting mixture of gaussians. If training

data is very noisy then gaussians fitted will have larger covariances and that could cause
very bad classification with KNN. Moreover, it would be interesting to study the effect of
fitting different number of gaussians to different target classes.

Pointing Stopping Picking
100 60 60
g *
] ; 40 s 40 1 A
@ sl 1 % A
& % 20 : 20f2
0 0 0
0 50 00 0 20 40 60 20 30 40 50
100 60 50
§ ’ 1 a0
{7 1. 40 rd 40 /
1] x v 2
2 50 1 mponsd 2;9:
o 5 20 . 30 '
o~ ’o
0 0 20
0 50 100 0 20 40 60 0 30 40 50
100 60 50
(L] .
g 3 o
[/j 40 #3 40 1/
5 50 o
8 ¥ 20 2 w| P2
L] 2 +
0 0 20
0 50 100 0 20 40 B0 0 30 40 50
100 60 50
o i 4.
P
0 kA T
o 90 . P a4 3
S 200 4.#, 30 /
g 1
0 ‘ 0 : ‘ 20 ‘ :
0 50 100 0 20 40 60 20 30 40 50

Figure 6: Different number of gaussians fitted to the 3 classes of the data

References

[1] Hastie, T., Tibshirani, R., Friedman, J. (2000he Elements of Statistical Learni(lgages 411-
430) New York: Springer-verlag.

[2] Jojic, N., Brumitt, B., Meyers, B., Harris, S. & Huang, T., (200D¢tection and Estimation of
Pointing Gestures in Dense Disparity Mas Proc. of International Conference on Automatic Face
and Gesture Recognition, 468-474, 2000.

[3] Watson, R., (1993A Survey of Gesture Recognition TechniqUigsity College, Dublin, TCD-
CS-93-11.

[4] Sun, F., Omachi, S., Aso, H., (1998n Algorithm for Estimating Mixture Distribution of High
Dimensional Vectors And Its Application to Character RecognjtRnoceedings of The 11th Scandi-
navian Conference on Image Analysis (SCIA99), pp.267-274, June 1999.

[5] Bohm, K., Broll, W., and Sokolewicz, MDynamic Gesture Recognition using Neural Networks:
A Fundament for Advanced Interaction ConstructiomProceedings of IS&T/SPIE’s Symposium on
Electronic Imaging: Science & Technology 1994 (EI'94). San Jos (February 1994), SPIE, 336-346.

[6] Deng, J. W. & Tsui, H. T.A Novel Two-layer PCA/MDA Scheme for Hand Posture Recognition
in The 5th International Conference on Automatic Face and Gesture Recognition, May 20-21, 2002,
Washington, DC , USA .pp. 294-299.

