
Motion Segmentation Using Spanning Trees and
Graph Cuts

B. Tech Project Report
Submitted in partial fulfillment of the requirements

for the degree of
Bachelor of Technology

Abhishek Ranjan
Roll No: 99005033

under the guidance of
Prof. Sharat Chandran

a
Department of Computer Science and Engineering

Indian Institute of Technology
Bombay

May 26, 2003

Acknowledgement

I would like to thank Dr. Sharat Chandran, for his invaluable guidance and encouragement.
Without his support the realization of this project would not have been possible.

Abhishek Ranjan

Abstract

Motion segmentation in videos involves identifying regions in the frames of the video that
correspond to independently moving objects. This is one of the key techniques that help
solve various problems encountered when dealing with image sequences, such as redun-
dancy elimination in digital video and tracking of moving objects.

Graph theoretic approaches have been widely used for performing segmentation. In this
report we have studied some such interesting graph algorithms. We propose an algorithm
for segmentation which uses the minimum spanning tree algorithm and a special graph cut,
called normalized cut.

i

Contents

1 Introduction 1
1.1 Image versus video . 2
1.2 Segmentation and graph theory . 2
1.3 Overview of the report . 3

2 Preliminary Ideas and Common Approaches 5
2.1 Basics . 5
2.2 Temporal analysis . 5
2.3 Motion segmentation . 7

2.3.1 Segmentation using background registration technique 7
2.3.2 Segmentation based on graph theoretical approach 8

3 Graph Theoretic Image Segmentation Techniques 9
3.1 Segmentation using normalized cut (Ncut) . 9

3.1.1 Graph representation of image . 10
3.1.2 Normalized cuts . 10
3.1.3 Approximate minimization . 12
3.1.4 Overall algorithm . 14
3.1.5 Discussion . 15
3.1.6 Complexity analysis . 15

3.2 Segmentation using local intensity variation 16
3.2.1 Graph representation of image . 16
3.2.2 Basic definitions and criteria . 16
3.2.3 Overall algorithm and time complexity 17

3.3 Summary . 18

4 Our Approach 19
4.1 Motivation . 19
4.2 Details of approach . 19
4.3 Algorithm . 21

ii

4.4 Discussion . 22

5 Implementation Details 24
5.1 Modified P-Algorithm implementation . 24
5.2 Cluster merging . 24
5.3 Normalized cuts . 24

6 Summary 25

A Key Proofs 26

B Key Data Structures and Implementation Details 28

iii

C h a p t e r 1

Introduction

Digital image and video analysis techniques form the basis for many new multimedia ser-
vices. Recent applications of these techniques in the fields of medical imaging, automated
surveillance, intelligent military defense systems, entertainment industries, etc. show their
potential use. The key step in most of these applications is to take inputs as digital videos
or images and find out “regions” in them. This is step is called image segmentation if the
input is an image and video segmentation if the input is a video sequence. In general the
problem of segmentation involves identifying various mutually disjoint sets of points in a
space, with points in one set lying close to each other.

Figure 1.1: An application in intelligent military defense system: On the left an input image
is given and on the right the fighter jet in the image has been identified as a region. This
segmentation process forms an integral part of the target detection unit in automated anti-
aircraft missile control.

Image segmentation has been among the most challenging problems in computer vision
for the last three decades. From the Gestalt psychology of perception to the modern compli-
cated mathematical formulations, there have been numerous philosophies for segmentation.
These continued efforts made by various scientific communities suggest that the approach
and the criteria of goodness of segmentation rely heavily on the end-application, e.g. a face
detection application needs an accurate and fine segmentation of the face image, while a

1

real time traffic control application needs a fast algorithm for detecting most prominently
moving bodies on the road.

These requirements point to two basic characteristics of a segmentation algorithm

• Feature Space. Before starting the segmentation, features which decide the similarity
or dissimilarity of pixels must be determined. These set of features form the feature
space for the segmentation. Some common feature spaces are gray values of pixels for
a gray scale image, RGB values for color images, motion profiles of pixels for sequence
of images or videos.

• Level. This refers to the level of segmentation: fine or coarse. A fine segmentation
forms a large number of small sized clusters, each cluster containing closely spaced
pixels in some feature space. On the other hand, a coarse segmentation creates few
large clusters. The ideal size of clusters depends upon the input. Segmentation algo-
rithms often suffer from inappropriate level of segmentation, either under-segmentation
or over-segmentation.

We address these issues in this report and analyze the solutions proposed.

1.1 Image versus video

As we have seen that the input to the problem of segmentation can either be a video or
an image. But there is an inherent similarity between these two media. We can think of a
video as a sequence of images so the basic unit on which the video segmentation algorithms
operate is actually an image or a frame. The difference is that video segmentation must con-
sider a larger feature space because they have moving objects. Informally we can say that
video segmentation is essentially a segmentation problem, similar to the image segmenta-
tion problem, with pixel motion being an important dimension of the feature space. Figure
1.2 illustrates this similarity between videos and images. In this figure, region covered by
athlete Carl Lewis has been segmented from the background in various frames of a video
and these frames are shown separately. It can be seen in the figure that each frame is an
image and the portion of athlete has been segmented in each of them.

In this report we explain some measures to characterize pixel motion as a feature space
dimension, and then discuss general algorithms for segmenting an image in a given feature
space.

1.2 Segmentation and graph theory

Graphs have been used for representing several systems in computer science. Images and
videos are also represented as graphs. The pixels can be represented by nodes of the graph
and similarity of two pixel values can be expressed as weighted edges. This representa-
tion of images as graphs allows the use of various well studied properties of graphs in the
problem of segmentation. In this project we discuss the notion of normalized cuts and seg-
mentation based on this cut. We further use spanning trees to speed up the normalized cut
based segmentation algorithm.

2

Figure 1.2: Segmentation of a sequence of frames of a video clip of Carl Lewis, using the
normalized cut method [6]

1.3 Overview of the report

This report concentrates on the graph theoretic image segmentation, two philosophies of
segmentation and our approach to combine the two for a faster algorithm:

• Chapter 2 discusses basic concepts relevant to video segmentation. We describe the

3

feature space for the motion segmentation. Two broad approaches for motion segmen-
tation have been briefly discussed.

• Chapter 3 deals with two different graph theoretic approaches for image segmentation,
namely Normalized cuts technique and Local variation techniques.

• Chapter 4 describes our proposal for combining two approaches to get a faster hierar-
chical segmentation algorithm.

• Chapter 5 briefs the implementation of the algorithm proposed.

• Chapter 6 summarizes the work done in this project.

4

C h a p t e r 2

Preliminary Ideas and Common
Approaches

Video analysis involves several steps before we actually start operations on frames. In this
chapter we will briefly discuss these steps and then move on to motion segmentation tech-
niques.

2.1 Basics

Production process of video involves several complex movements of camera. These move-
ments of camera cause the motion of the objects across various frames. A sequence of frames
which are created by continuous motion of camera such as panning, zooming etc. is called a
shot. These shots do not contain abrupt changes in scene. Common videos are sequences of
such shots. For video analysis purposes we work at a lower level where video is separated
into its shots. Overall process of video analysis involves two steps:

• Shot detection: In this step video is divided into its shots. Shots are separated based on
the difference between pixel values of the frames. Several algorithms/systems have
been developed for shot detection.

• Analysis: Frames of a shot are further analyzed based on the requirement.

In this project we assume that the shots have already been detected in the video. We
address the video analysis problem of motion segmentation. This aims at breaking a scene
into its most prominent moving groups.

2.2 Temporal analysis

In videos, objects and background keep changing over time. We refer to this aspect of videos
as temporal factor in videos. Temporal factor is one of the most important factors which dis-
tinguishes motion segmentation in videos from image segmentation. The issue of temporal
factor is addressed by characterizing the difference between frames in the frame sequence

5

of the video. Common motion segmentation algorithms can be broadly divided into two
categories on the basis of the way they deal with differences across frames:

1. Approach based on Spatial Homogeneity: In this approach, images (frames) are simplified
using some filters, and then region boundary decision is made. Thus image now has
distinct regions separated by the boundaries determined above. Next, for each region,
motion vector is calculated and regions with similar motion vectors are merged together.
Thus this approach stresses on tracking the boundary of objects, but is computation-
ally costly because of boundary detection and motion vector calculation, which are
themselves costly operations.

2. Approach based on change detection: In this approach change in the frames form the
primary criteria for segmentation, rather than the spatial similarity. This approach
is in some sense reverse of the previous one. Here moving objects are detected on the
basis of differences between two consecutive frames. And boundary fine-tuning based
on the spatial-temporal information is done later. Advantage with this approach is that
it stresses on the motion of the object. It has been found to be better than the previous
approach [7].

The concept of motion vector, used above, is based on the motion estimation techniques, i.e.
we need to estimate the change in the coordinates of a particular pixel value across frames.
There are several approaches for this estimation. We describe two of them below:

1. Optical Flow: This is the apparent motion of the brightness patterns across the im-
age plane. This is based on the assumption that if an object changes its position
across frames then its intensity pattern remains the same. Let the image sequence be
parametrized by an intensity function f(x, y, t), at coordinate (x, y) and time t. Then
from above stated assumption, for a displacement (in spatial and temporal domain) of
(dx, dy, dt), f(x, y, t) = f(x+ dx, y + dy, t+ dt). Now, using Taylor expansion:

f(x+ dx, y + dy, t+ dt) = f(x, y, t) +
δf

δx
dx+

δf

δy
dy +

δf

δt
dt+ . . . (2.1)

⇒ δf

δx
dx+

δf

δy
dy +

δf

δt
dt+ . . . = 0

⇒ −δf
δt

=
δf

δx
u+

δf

δy
v

⇒ −δf
δt

= 4.u

Here4 = (δf
δx
, δf
δy

), u = dx
dt
, v = dy

dt
and u = (u, v). The aim is to assign the velocity vector

u to each pixel. But here we have two unknowns (u, v) and one equation. So, we can
not determine the variables. Though several approaches apply additional constraints
to estimate the variables of u, this is still a drawback in this approach and is known as
the Aperture problem.

6

2. Motion Profile: This is a measure of the probability distribution of the image velocity
at each pixel [6]. The advantage of motion profile is that it considers the direction of
the motion along with the uncertainty associated with it. Let I t(Xi) denote the image
pixel value at location Xi ∈ R2 at time t. Now, at time t + 1 this pixel value can be
found at Xi + dx, dx ∈ R2. So, we define Pi(dx), for a particular dx, as the probability
that I t(Xi) corresponds to I t+1(Xi + dx). Pi(dx) is estimated by first computing the
similarity between I t(Xi) and I t+1(Xi + dx) as Si(dx), and then normalizing it as :

Pi(dx) =
Si(dx)∑
dz Si(dz)

(2.2)

Thus with each pixel we have associated with it a measure of motion of that pixel.

2.3 Motion segmentation

Having dealt with the concepts of temporal analysis in the last section, in this section we
will discuss motion segmentation and will look at an algorithm which is directly based on
the change detection. A detailed survey of various strategies and frameworks for image and
motion based video segmentation can be found in [8]. In this report we are chiefly concerned
with graph theoretic approaches.

2.3.1 Segmentation using background registration technique

In [7], a video motion segmentation algorithm has been proposed based on change-detection.
The algorithm is divided into the following five major steps:

1. Frame Difference Mask Calculation: For each pixel a Frame Difference Mask(FD) is cal-
culated by considering the change in the pixel value for two consecutive frames. If
the change in the pixel value is greater than a threshold then that pixel is masked as
changing, and stationary otherwise.

2. Background Registration: In this step FD calculated in the above step is used for detect-
ing background region. If FD is stationary for several consecutive frames then that
pixel is marked as a part of the background. This is done by maintaining a stationary
mapM of pixels. Every time a pixel is found to be stationary, the count corresponding
to that pixel in M is incremented. Thus the value of a pixel in M denotes the extent to
which that pixel should belong to background.

3. Background Difference: This step generates a Background Difference Mask(BD). This is
calculated for each pixel by thresholding the difference between current frame value
and the value stored in M . This value will be later used in object detection.

4. Object Detection: Using the values calculated in above steps, for each pixel an Object
Mask(OM) is calculated under various region descriptions (e.g. Moving, Stationary,
Uncovered Background etc.). So, OM assigns one of the regions to each pixel.

7

5. Post Processing: After step 4, an initial OM is generated. But it contains some noise
in background and object both. In post processing step, these noise are removed by
smoothing the boundary and applying other filters.

Figure 2.1 shows a result of running this background registration technique. Moving object
and its shadow have been well segmented from the background.

Figure 2.1: Moving object segmentation using background registration technique [7]

2.3.2 Segmentation based on graph theoretical approach

Graph theory is a well studied branch of computer science and several properties of graph
are exploited for segmentation and clustering purposes. A general clustering algorithm
based on flows has been proposed by Wu and Leahy [11]. [4], [1] use minimum span-
ning trees for segmentation. Similarly different forms of graph cuts has also been used
for segmenting images, e.g. nested cuts [10], normalized cuts [5]. In graph theoretic mo-
tion segmentation algorithms temporal changes in the frames are characterized first. Thus,
each pixel gets some spatial-temporal characteristic associated with it. Next, a graph is
constructed from frames. So, the problem then is to identify sub-graphs in the graph with
similar spatial-temporal properties (such as intensity variation in space or across frames). In
the following chapters we will discuss graph theoretic image segmentation techniques.

8

C h a p t e r 3

Graph Theoretic Image Segmentation
Techniques

The problem of image segmentation is to partition the image into its meaningful components.
Partition tries to cluster together the points which are closer to each other in some feature
space. Based on the way the segmentation is done, these approaches can be put under two
broad categories:

1. First approach can be called hierarchical or top down. In this approach image is parti-
tioned in two parts based on some global criteria. And then it is segmented recursively
in a hierarchical manner. Graph-cut based approaches, which minimizes the cut value
based on some global criteria, fall under this category.

2. Second approach can be called local approach. In this approach segmentation process
proceeds by creating clusters at several places in the image based on some local simi-
larity criteria. The algorithm described in [4], where segmentation is done by growing
a minimum spanning tree, is an example of this approach.

In this Chapter we will discuss two algorithms: “Image segmentation using Normalized
Cuts” and “Image segmentation using Local Intensity Variation”.

3.1 Segmentation using normalized cut (Ncut)

Segmentation using Ncut partitions the image in top down manner. For a partition V1, V2 of
graph G(V,E), the quantity Ncut, intuitively, denotes how strongly connected are the nodes
of Vi among themselves as compared to the cut(V1, V2). Thus, as Ncut value decreases, ratio
of sum of edge-weights inside each partition to sum of edge-weights across partition in-
creases. So, in case of graph representation of images, if weights of edges are the measure of
similarity, then Ncut gives a measure of goodness of image segmentation, such that lower
is the Ncut value, better is the segmentation. In this section we will discuss the algorithm
which partitions the image by minimizing the ncut. We will first represent the Image as a

9

graph and formally define normalized cut for the graph, then we will discuss the minimiza-
tion of Ncut. For this we will first write Ncut in terms of some matrices and then will operate
on those matrices.

3.1.1 Graph representation of image

Let I be an n × n pixel image. For representing it as a graph G(V,E), V is same as the
set of pixels. Connect each pixel to its 4 neighboring pixels. So the image is represented
as a grid-graph. Weight w(u, v) of the edge between vertices u, v is a measure of similarity
between u, v : higher the similarity, higher is the weight. One such weight function could
be w(u, v) = e−k|Iu−Iv |. Once we have found a graph representation for the image, we will
apply normalized cuts recursively to segment the image.

3.1.2 Normalized cuts

Let G(V,E) be a graph with |V | = n, and w(i, j) denote the weight of the edge joining vi, vj .
normalized cut V = {A,B} is defined as,

Ncut(A,B) =
cut(A,B)

assoc(A, V)
+

cut(A,B)

assoc(B, V)
(3.1)

where,
cut(A,B) =

∑
vi∈A,vj∈B

w(i, j) (3.2)

assoc(X,V) =
∑

vi∈X,vj∈V

w(i, j) (3.3)

Next, we will write this Ncut in the form of following matrices and variables:

x =
[
x1 x2 . . . xn

]
, xi =

{
1, xi ∈ A
0, xi ∈ B

}
(3.4)

d =
[
d1 d2 . . . dn

]
,where di =

∑
mw(i,m) (3.5)

D =

d1 0 . . . 0
0 d2 . . . 0
...

...
...

...
0 0 . . . dn

 (3.6)

W =

w(1, 1) w(1, 2) . . . w(1, n)
w(2, 1) w(2, 2) . . . w(2, n)

...
...

...
...

w(n, 1) w(n, 2) . . . w(n, n)

 (3.7)

k =

∑
i,xi>0 di∑
i di

(3.8)

b =
k

1− k
(3.9)

10

b =

∑
xi>0 di∑
xi<0 di

(3.10)

Therefore, we can write Ncut(A,B)

=

∑n
i=1,xi>0

∑n
j=i+1,xj<0−w(i, j)xixj∑

i,xi>0 di
+

∑n
i=1,xi<0

∑n
j=i+1,xj>0−w(i, j)xixj∑

i,xi<0 di

=
(1 + x)T (D −W)(1 + x)

4k1TD1
+

(1 + x)T (D −W)(1− x)

4(1− k)1TD1

=
[(1 + x)− b(1− x)]T (D −W)[(1 + x)− b(1− x)]

4b1TD1
(3.11)

Setting,

y =
(1 + x)

2
− b(1− x)

2
(3.12)

we can see that yi =

{
1, xi ∈ A
−b, xi ∈ B

}
also,

yTD1 =
∑
xi>0

di − b
∑
xi<0

di = 0 (3.13)

yTDy =
∑
xi>0

di + b2
∑
xi<0

di

= b(
∑
xi>0

)di + b
∑
xi<0

di

= b1TD1 (3.14)

Therefore, using (3.12) and (3.14) in (3.11) we get :

Ncut(A,B) =
yT (D −W)y

yTDy
(3.15)

and from (3.13) y is constrained by following conditions:

yi ∈ {1,−b} (3.16)
yTD1 = 0 (3.17)

Thus solving normalized cuts(Ncut) problem has been reduced to solving following min-
imization problem for yn×1:

min
yTD1=0,yi∈{1,−b}

yT (D −W)y

yTDy
(3.18)

Where, for partition {A, B} of Vertex set V

b =

∑
xi>0 di∑
xi<0 di

=

∑
vi∈A

∑
vj∈V w(i, j)∑

vi∈B
∑

vj∈V w(i, j)
(3.19)

11

and y = [y1y2 . . . yn]. yT (D−W)y
yTDy

is called the Rayleigh Quotient R(y). Our aim is to minimize
the R(y) in (1). For this, we will start with (3.18), and using Theorem 1 we will find an ap-
proximate solution.

Theorem 1: Let A ∈ Rn×n be a Symmetric Matrix, with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn
(Eigenvalues of a real symmetric matrix are always real), and the corresponding eigenvectors
are p1, p2, . . . pn, such that pTi pj = δij (δij is Kroneker Delta). Let V be a vector space of finite
dimension n, and for k = 1, 2 . . . n, let Vk denote the subspace of V spanned by vectors
p1p2 . . . pk. Let RA(v) = vTAv

vT v
v ∈ V, v 6= 0, then

λk = min
v⊥Vk−1

vTAv

vTv
(3.20)

(Theorem and proof in [2])

3.1.3 Approximate minimization

Let

D
1
2 =

√
d1 0 . . . 0
0
√
d2 . . . 0

...
...

...
...

0 0 . . .
√
dn

 (3.21)

D−
1
2 = (D

1
2)−1 =

1√
d1

0 . . . 0

0 1√
d2

. . . 0
...

...
...

...
0 0 . . . 1√

dn

 (3.22)

D
T
2 = (D

1
2)T (3.23)

D−
T
2 = (D

T
2)−1 (3.24)

⇒ D
T
2 = D−

T
2 = D−

1
2 (3.25)

Now, substituting
y = D−

1
2u (3.26)

in (3.18) we get :

min
uTD

1
2 1=0,ui∈{

√
di,−b

√
di}

uTD−
T
2 (D −W)D−

1
2u

uTu
(3.27)

Feasibility of this substitution is discussed in the next section. For the time being we assume
that we can always do this substitution. LetM = D−

T
2 (D−W)D−

1
2 , so, from above equation

we get

min
uTD

1
2 1=0,ui∈{

√
di,−b

√
di}

uTMu

uTu
(3.28)

12

So, solving (3.18) for y is equivalent to solving (3.28) for u. Next we will find approximate
solution to (3.28). Eigenvalue equation for M is

Mz = λz (3.29)

Now we note that M has following properties:

1. M is symmetric. Here (D−W) is a symmetric matrix. D−
1
2 , D−

T
2 are Diagonal matrices,

and D−
1
2 = D−

T
2 . So, M is also a symmetric matrix, because we have a result that If

Xn×n is a diagonal matrix and An×n is a symmetric matrix then XAX is also a symmetric
matrix (Proof 1, Appendix).

2. M has n Real eigenvalues, because we have the result that Real Symmetric matrix has
real eigenvalues (Proof 2, Appendix)

3. M has n orthogonal eigenvectors, because we have a result that Real Symmetric n × n
matrix has orthogonal eigenvectors (Proof 3, Appendix).

4. M is a Symmetric Positive Definite matrix (Proof 4, Appendix).

5. M has non-negative eigenvalues, because we have the result that Symmetric Positive
Definite matrix has non-negative eigenvalues (Proof 5, Appendix).

Let M has eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn and corresponding eigenvectors are z1, z2 . . . zn.
Since M ∈ Rn×n is Symmetric (by property 1), has n real eigenvalues (by property 2), has
orthogonal set of eigenvectors (by property 3), therefore, from Theorem 1

λk = min
u⊥Vk−1,u∈V,u 6=0

uTMu

uTu
(3.30)

For k = 2, V2 is the subspace spanned by eigenvector z1 which corresponds to the smallest
eigenvalue λ1. So, condition u ⊥ V1 ⇒ uT z1 = 0. Thus we can write (5) as:

λ2 = min
uT z1=0,u∈V,u 6=0

uTMu

uTu
(3.31)

Next we will find z1 and λ1. For this, we put z = D
1
2 1 in (3.29) to get

MD
1
2 1 = λD

1
2 1

⇒ D−
T
2 (D −W)D−

1
2D

1
2 1 = λD

1
2 1

⇒ D−
T
2 (D −W)1 = λD

1
2 1

⇒ 0 = λD
1
2 1, since (D −W)1 = 0

⇒ λ = 0

so eigenvector z = D
1
2 1 corresponds to eigenvalue λ = 0. From property 4, M has only

non-negative eigenvalues, so 0 is in fact the smallest eigenvalue. So,

z1 = D
1
2 1 (3.32)

13

Therefore,

λ2 = min
uTD

1
2 1=0,u∈V,u 6=0

uTMu

uTu
(3.33)

Now, comparing (3.28) and (3.33), if we relax the condition ui ∈ {
√
di,−b

√
di} in (3.28) to

u ∈ V , λ2 is the solution to (3.28). And, since solving (3.28) is equivalent to solving (3.18), λ2

is the solution to (3.18), provided we relax the condition as stated above.

3.1.4 Overall algorithm

We can now use the result obtained in the previous subsection and write the overall image
segmentation algorithm. Given an Image I , get the Graph representation G(V,E) of I . Now,
Ncut(G) is as follows:

Ncut(G)

1. Construct the eigenvalue problem D−
1
2 (D −W)D−

1
2y = λy

2. Solve the eigenvalue problem for second smallest eigenvalue. Use corresponding
eigenvector to bipartition the graph G into G1, G2.

3. If (based on some prior criteria) current partition need to be further re-partitioned then
recursively call Ncut(G1), Ncut(G2).

Figure 3.1 and 3.2 shows recursive segmentation of the left most image. In Figure 3.1 of
Arc de triumph, the left most image has been segmented into sky and Arc de triumph. Further
recursive segmentation of Arc de triumph causes the sky visible below the Arc to be separated.
Again ground on the both sides of the Arc have been segmented.

Figure 3.1: Segmentation of Arc de triumph using Normalized Cuts recursively [5]

Figure 3.2: Segmentation of a color scene using Normalized Cuts recursively [5]

14

3.1.5 Discussion

Substitution described by (3.26) means :
u1

u2
...
un

 =

√
d1 0 . . . 0
0
√
d2 . . . 0

...
...

...
...

0 0 . . .
√
dn

y1

y2
...
yn

 =

y1

√
d1

y2

√
d2

...
yn
√
dn

⇒ yi =

ui√
di

(3.34)

From (3.34), for yi to be finite, di > 0, or, in terms of graph edges, vertex vi should have at
least one non-zero weight incident edge.

From the last section we find that λ2 would have been the required value of (3.18), if yi’s
had been relaxed to take any real value, instead of just 1 or−b. Now we check what happens
if, fortunately, after solving for y it actually comes out to be yi ∈ {1,−b}:

yi =
(1 + xi)

2
− b(1− xi)

2
(3.35)

1. xi = 1⇒ yi = 1

2. xi = −1⇒ yi = −b

So, we get a partition from vector x where for xi = 1 we put the corresponding node in A,
and for xi = −1 we put it in B. So, this suggests one of the possible ways to interpret vector
x. If we get xi /∈ {1,−1}, then in that case we can just look at its sign and xi > 0 ⇒ xi ∈ A
and xi > 0⇒ xi ∈ A.

3.1.6 Complexity analysis

Time complexity of this image segmentation algorithm is same as the time complexity of
solving standard eigenvalue problem, which is cubic. But matrix M has following proper-
ties:

1. Since W is sparse, for locally connected graph, M is also sparse. This can be shown by
following argument. We will show that if Wij = 0 then Mij = 0. We have

((D −W)D−
1
2)ij =

∑
k

(D −W)ik(D
− 1

2)kj = (D −W)ij(D
− 1

2)jj (3.36)

and
Wij = 0⇒ (D −W)ij = 0 (3.37)

so,

(D−
1
2 (D −W)D−

1
2)ij

=
∑
k

(D−
1
2)ik((D −W)D−

1
2)kj

15

= (D−
1
2)ii((D −W)D−

1
2)ij

= (D−
1
2)ii(D −W)ij(D

− 1
2)jj

=

{
0, Wij = 0

(D−
1
2)ii(D −W)ij(D

− 1
2)jj, Wij 6= 0

}
2. Only the top eigenvector is needed for partition.

Above properties are exploited in Lanczos Method for solving eigenvalue problems. The time
complexity of Lanczos Method is O(mn) +O(mM(n)), where n is the dimension of matrix, m
is the maximum number of matrix-vector multiplication required and M(n) is the cost of a
matrix-vector product computation of Mx. M(n) is O(n) because ith row of M has only d
non-zero terms, where d is the degree of the vi vertex in G. And in most practical cases d
is constant (for a grid graph, in our case, d = 4). So each row-vector multiplication is O(1)
time, so Mx calculation is O(n). So, this results in a complexity of O(mn) for the overall
algorithm. Further, empirically it has been found that m < O(

√
n) [5]. So, complexity of

Image Segmentation algorithm is O(n1.5).

3.2 Segmentation using local intensity variation

In this approach the notion of “Good” segmentation has been formalized [4]. We call this al-
gorithm “K-algorithm”. Based on the goodness criteria terms “Too-fine”, i.e. over-segmentation
and “Too-coarse”, i.e. under-segmentation have been formally defined. Further, a graph
theoretic approach is proposed which is based on the concept of variation inside a partition
and variation across partitions. The algorithm finds the partition {G1, G2, . . . , Gk} forG such
that intensity variation inside any two neighboring partitions Gi, Gj is less than the varia-
tion across them. The partition produced by this algorithm is neither over-segmentation nor
under-segmentation.

3.2.1 Graph representation of image

The algorithm first constructs a graphG(V,E) from a given image where V is a set of vertices
vi corresponding to each pixel in the image. An edge is defined between pixels pi and pj such
that ‖pi − pj‖ < d for some given distance d and a weight function w is defined as

w((vi, vj)) = ‖I(vi)− I(vj)‖, (vi, vj) ∈ E (3.38)

where I(vi) is defined as intensity of pixel corresponding to vi. Here, we can note that
w((vi, vj)) is direct measure of dissimilarity: higher the weight, higher is the dissimilarity,
which is exactly opposite to the measure used in Ncut.

3.2.2 Basic definitions and criteria

Intuitively, this algorithm clusters the nodes which are joined by light weight edges (and
hence combines “similar pixels” in the original image). For creating these clusters some
criteria have been defined, and clusters are merged if they satisfy those criteria. Next, we

16

define some terms and the criteria which create the basis for the algorithm.

If S is a segmentation of G(V,E), C is some component in S, M(C,E) is the Minimum
spanning tree of C with edges in E, then the algorithm uses following notions of “variation”
and “merging criteria”:

• Internal variation of a component C

Int(C) = max
e∈MST (C,E)

w(e) (3.39)

• Variation or difference across components

Dif(C1, C2) = min
vi∈C1,vj∈C2

w((vi, vj)) (3.40)

• Criteria for merging two components C1, C2

Dif(C1, C2) ≤MInt(C1, C2) (3.41)

where,

MInt(C1, C2) = min(Int(C1) +
K

‖C1‖
, Int(C2) +

K

‖C2‖
) (3.42)

‖C‖ denotes the size of component C and K is some constant.

3.2.3 Overall algorithm and time complexity

Given an image with a corresponding graph G = (V,E), the algorithm produces a segmen-
tation S as follows :

K-Algorithm

1. Sort E into π = (o1, o2, . . . , ok) by non-decreasing edge weight.

2. Start with S0 = {v1, v2 . . . vn}, n = ‖V ‖.

3. Repeat Step 4 for q = 1, . . . , k, k = ‖E‖.

4. Construct Sq given Sq−1 as follows. Let oq = (vi, vj), i.e., edge oq connects vertices vi
and vj . If vi and vj are in disjoint components of Sq−1 and w(oq) is small compared to
the internal difference of components containing vi and vj , then merge the two com-
ponents, otherwise do nothing. That is if, Cq−1

i 6= Cq−1
j and w(oq) ≤MInt(Cq−1

i , Cq−1
j),

then Sq = Sq−1 ∪ {oq} else Sq = Sq−1.

The running time of the algorithm is at max O(n log n).

Figure 3.3 presents an example image segmentation produced by K-Algorithm. The ad-
vantage of K-Algorithm is illustrated here in the sense that it is able to segment out regions
with noise. Some improvements in the K-Algorithm have been made in [1]. The algorithm

17

proposed in [1] is called P-Algorithm. This algorithm uses efficient Prim Algorithm for find-
ing Int(C). With these improvements P-Algorithm may run in time linear in the size of
input image. P-Algorithm uses a notion of seed point and grows the region from that seed
point. Seed points are picked from a priority queue. This procedure has the advantage that
growth of the regions starts from different parts of the image. Several cases and results of
better performance have been presented in [1].

Figure 3.3: 3 regions produced by K-Algorithm [4]

3.3 Summary

In this chapter we have discussed Graph Theoretic image segmentation techniques. We
discussed two algorithms which follow different approaches, and in some sense represent
two classes of approaches. Ncut approach has an intention of partitioning image into two
major regions and further sub-partitioning each region. But, Local Variation approach has an
intention of merging small similar groups to eventually grow major regions of the image.

18

C h a p t e r 4

Our Approach

In this project, we proposed a hierarchical image segmentation algorithm. This chapter
discusses the motivation behind our approach and the algorithm.

4.1 Motivation

In the earlier chapters we have discussed two main philosophies behind image segmenta-
tion, viz. hierarchical and local. Each of them has its own advantages and disadvantages. The
preference of one over the other depends on the final application. Hierarchical approach
has a benefit that it gives an overall idea of the foreground and the background. Moreover,
hierarchical approach gives the control on the level of segmentation which is quite desired
in several interactive applications. But recursively using this approach for finding fine seg-
mentation will be costly. Local approach starts from small clusters, and grows to larger ones.
Its level of segmentation depends on some threshold decided in the beginning, so we can
not stop the segmentation at some intermediate stage.

We think that combining these two approaches can lead to a faster and better segmenta-
tion. The idea is to use local approach for reducing the size of the problem. Ncut is a good
measure of segmentation [5], so we use this as hierarchical approach. The idea of reducing
the input size has been used in [3] through algebraic multi-grid solvers. We propose an al-
gorithm which uses P-Algo for reducing the size of the input to Ncut. Let the input image
be of size n. The modified P-Algo takes O(n log n) time and produces

√
n clusters. These

clusters can be assumed to be a coarse form of the original input image. We apply Ncut seg-
mentation algorithm on these

√
n clusters of pixels. Since running time of Ncut algorithm is

typically O(n1.5), for input size
√
n time will be n0.75.

4.2 Details of approach

We first describe the overall structure of the algorithm, then we will present it more con-
cretely in pseudo code style. The algorithm has 3 major parts:

19

Figure 4.1: Illustration of Step 1. Clusters are shown as polygons and linking nodes are
colored in black. Annotated arrows show the weighted links between two handles.

Figure 4.2: Illustration of Step 2 (continued from Figure 4.1). Handles are arranged as linked
lists and edges are annotated according to their weights w1 > w2 > w3 (a) Initial list
after step 1, (b) List after merging h1 and h2 which are joined by maximum weight edge w1,
(c) List after merging h4 and h5 which are joined by w2.

1. A weighted undirected graph G(V,E) is constructed from the input image I of size n.
V is the set of all pixels. 4-neighbors are connected and E is the set of all the edges.

20

Weight of the edge between vertices u, v is w(u, v) = |Iu − Iv|. A modified version of
P-Algo is applied on G. At the end of this step a weighted directed graph G′(V ′, E ′)
is obtained. V ′ is the set of data structure handle(hi), which contains vertices of V (see
Appendix B). These handles represent a cluster of pixels and the directed edges join
two clusters that can be merged further. Weight of the edge from hi to hj is measured

as Int(h
i
)

edge wt and it is an increasing function of the similarity between the two clusters

it’s joining. This step takes O(n log n) time. An example has been shown in Figure 4.1.

2. The edges of E ′ are sorted in decreasing order of weight. Starting from the maximum
weight edge two adjacent clusters are merged sequentially. This is repeated as long
as connected components are there in the graph and the number of clusters is greater
than n. At the end of this step we get a set of clusters. This step takes O(m logm) time,
where m is the number of edges and m < n. Some steps of this part are shown in
Figure 4.2.

3. We apply Ncut algorithm on this cluster set of size
√
n.

4.3 Algorithm

In this section we present the pseudocode of the modified P-Algo. The data-structures in-
volved are described in Appendix B

procedure overall()
initQ2()
initQ1()
i← 0
h← new(handle)
while Q2 6= φ do

s← findMin(Q2)
Q1.dec(s, 0)
grow(h, i)
i← i+1

end while

procedure initQ2

for all v ∈ V do
x←minAdjacent(v)
Q2.insert(v,x)

end for

procedure grow(h, i)
done← false
while not done do

u← findMin(Q1)
if causeMerge(h, u) then

if isLinkingNode(u) then
h’ = handle pointing to u
Link handles h, h’
linkWeight← Int(h’)

edgeWeight
end if
h.add(u)
updateAdjacent(u)
Q1.remove(u)
Q2.remove(u)

else
u.setLinkingNode (true)
u.setHandlePointingIt (h)
done← true

end if
end while

21

procedure initQ1

for all v ∈ V do
v.key←∞
Q1.insert(v, v.key)

end for

procedure causeMerge(h, u)
if u.key< (h.internalVariation + τ)
then

return true
else

return false
end if

procedure updateAdjacent(u)
for all v ∈ adjacent(u) do

if (v ∈ Q1) ∧ (v.key<w(u,v))
then

v.key←w(u,v)
Q1.decreaseKey(v,v.key)

end if
end for

Pseudocode: Step 1

The above pseudocode is for step 1. Ncut part of the algorithm is the same as one described
in previous sections.

procedure mergeClusters()
sort(edgeList) {sorted list of edges ei’s looks like (Cxe0Cx′)(Cye1Cy′) . . .,
where ei ≥ ei+1}
i← 1
count← number of clusters
while (count ≥ n) ∧ (i ≤ no of edges) do

merge(Cx, Cx′) {ei joins Cx, Cx′}
i← i+1
count← count-1

end while

Pseudocode: Step 2

4.4 Discussion

The algorithm assigns weight of the link to be Int(h’)
edgeWt because this is an increasing measure

of similarity between the handles joined by it; higher the ratio, higher the similarity. Int(h’)
is a measure of internal variation of the handle h’ and is calculated during the growth of h’,
so no extra calculation is needed for determining the link weight.

Overall complexity of the algorithm proposed can be found from the complexity of the
3 steps involved. Step-1 takes O(n log n), step-2 takes O(n log n) in the worst case, and the

22

final step of normalized cut takes O(m1.5), where m is the size of the input to the step-3. By
the conditions put in the algorithm m will be approximately O(n0.5), so this causes step-3 to
be O(n0.75). So, overall complexity becomes O(n log n) + O(n0.75), i.e. O(n log n). Thus we
have achieved a better time complexity in most of the cases, and even if this can not do any
better in some cases, it will not be worse.

23

C h a p t e r 5

Implementation Details

The current implementation is being done in following steps.

• Modified P-Algorithm implementation (step 1)

• Cluster merging (step 2)

• Normalized cuts based segmentation (step 3)

The details of these implementations are discussed in following sections.

5.1 Modified P-Algorithm implementation

This is implemented as an independent class which forms a linked list of clusters. The cur-
rent version of implementation uses “iMagick++” package for reading and writing images.
This enables the interface to accept input images in varied formats. For time considerations,
a faster but much restrained version is being implemented which takes some particular in-
put image format.

5.2 Cluster merging

This step uses recursive quick sort for sorting edges.

5.3 Normalized cuts

The normalized cuts method uses Lanczos algorithm for finding solution to eigenvalue
problem. This is being done by using LASO package [9] for matrix calculations.

24

C h a p t e r 6

Summary

In this report, we have done a survey of image segmentation and motion segmentation in
videos. Two approaches for the same have been studied in details. We have discussed the
segmentation algorithms based on local variation and normalized cuts. The segmentation
based on normalized cuts is a hierarchical algorithm but has high time complexity. We
proposed an algorithm which can perform the segmentation in time less than that taken by
normalized cut. The algorithm uses the segmentation based on local variation for creating
small clusters and coarsens the input image, hence reduces the input size for normalized
cuts algorithm.

This approach for coarsening the image can be extended to other feature spaces. Though
we are implementing this for images with pixel’s RGB value as the feature, for motion seg-
mentation motion profile could be the feature space.

25

Appendix A

Key Proofs

Results used in Chapter 3 are proved here.
Proof 1: If Dn×n is a diagonal matrix, An×n is a symmetric matrix, then DAD is symmetric:

(DAD)ij
= (D(AD))ij
=
∑

kDik(
∑

r AkrDrj)
=
∑

k

∑
r(DikAkrDrj)

=
∑

k,k 6=i
∑

r,r 6=j(DikAkrArj) +DiiAijDjj

= DiiAijDjj

= DjjAjiDii

= (DAD)ji.

Proof 2: If A ∈ Rn×n and symmetric matrix then A has real eigenvalues.
Ax = λx⇒ x∗Ax = λx∗x Here x∗x ∈ R, so if we prove that x∗Ax ∈ R then we are done. For
this we will prove that x∗Ax = x∗Ax.

x∗Ax
=
∑

i xi(Ax)i1
=
∑

i xi(
∑

k aikxk)
=
∑

i

∑
k(aikxkxi), since A is symmetric, so aij = aji, and using this we get

= (
∑

i aiixixi) +
∑n

i=1

∑n
j=i+1 aij(xixj + xixj)

x∗Ax
= (
∑

i aiixixi) +
∑n

i=1

∑n
j=i+1 aij(xixj + xixj)

= (
∑

i aiixixi) +
∑n

i=1

∑n
j=i+1 aij(xixj + xixj)

⇒ x∗Ax = x∗Ax

Proof 3: If An×n is a real symmetric matrix, then it has orthogonal set of eigenvectors.
Consider any two eigenvalues λi, λj and corresponding eigenvectors xi, xj .

xTj Axi = xTj λixi = λi(x
T
j xi) = λi < xi, xj >

(xTj Axi)
T = xTi Axj = xTi λjxj = λj(x

T
i xj) = λj < xi, xj >

but, (xTj Axi)
T = (λi < xi, xj >)T = λi < xi, xj >= xTj Axi

⇒ λi < xi, xj >= λj < xi, xj >
⇒< xi, xj > (λi − λj) = 0
⇒< xi, xj >= 0 for i 6= j

26

Proof 4: M is Symmetric Positive Definite(SPD), i.e. xTMx ≥ 0∀x .

xTD−
1
2 (D −W)D−

1
2xT =

[
x1√
d1

x2√
d2

. . . xn√
dn

]
d1 − w11 −w12 . . . w1n

−w21 d2 − w22 . . . w2n
...

...
...

...
−wn1 −wn2 . . . dn − wnn

x1√
d1
x2√
d2

...
xn√
dn

= { x1√

d1
(d1 − w11)− x2w21√

d2
− . . .− xnwn1√

dn
} x1√

d1

+{−x1w12√
d1

+ x2√
d2

(d2 − w22)− . . .− xnwn2√
dn
} x2√

d2
+ . . .

=
x2

1

d1
(d1 − w11) +

x2
2

d2
(d2 − w22) + . . .− 2x1x2√

d1d2
− 2x1x3√

d1d3
− . . .

=
x2

1

d1
(w12 + w13 + . . .+ w1n) +

x2
2

d2
(w21 + w23 + . . .+ w2n) + . . .

= w12{(x1√
d1

)2 + (x2√
d2

)2 − 2x1x2√
d1d2
}+ . . .

=
∑n

i=1

∑n
j=i+1 wij(

xi√
di
− xj√

dj
)2

≥ 0∀x
⇒M is SPD.

Proof 5: SPD matrix An×n has non-negative eigenvalues. Consider

Ax = λx
⇒ xTAx = xTλx = λxTx
⇒ λ‖x‖2 ≥ 0, because xTAx ≥ 0
⇒ λ ≥ 0

27

Appendix B

Key Data Structures and Implementation
Details

Some important classes and their main members are explained in this chapter.

struc vertexNwt{
BasicVertex *vertex;
float edgeWt;

};

Structure used to represent the adjacent vertices of a node. It also stores the weight of
the edge joining the two vertices.

class Handle{
Handle *nextHandle;
float linkWeight;
short noOfNodesBelow;
float internalVariation;
LinkedList<BasicVertex> *verticesList;
float getTau();
bool causeMerge(BasicVertex *);

};

Class used to represent the handles obtained after running P-Algo on the initial input im-
age. “nextHandle” is the pointer to the next handle determined by the algorithm’s step 1.
Several “BasicVertex” objects cluster to make one “Handle” object, and all the constituent
vertices are stored in “verticesList”. The function “causeMerge(BasicVertex *v)” returns if
“BasicVertex *v” can be merged in this handle.

28

class BasicVertex{
MyColor *pixelValue;
bool linkingNode;
int row, column;
Handle *handlePointingIt, *handlePointedByIt;
LinkedList<vertexNwt> *adjacentVertices;
int getQ1Index();
int getQ2Index();

};

Class used to represent the vertices of initial graph obtained directly from the image. “link-
ingNode” tells if this node is a link between two handles or not. “handlePointedByIt” points
to the “Handle” object under which it comes, and “handlePointingIt” points to the “Handle’
for which this is a linking node. “getQ1Index()” and “getQ2Index()” returns the index of the
this object in priority queues Q1 and Q2 respectively.

class PriorityQ{
bool indexSetting;

};

A modified class for priority queue. If “indexSetting” is set true in the constructor, index
of the element is stored with the object. This facilitates searching of the object in the queue
(given the pointer to the object) in O(1) time. Hence an element can be removed from the
queue in O(log n) time.

class ImageHandler{
char *inFile;
BasicVertex **getImageToGraph();
bool writeGraphToImage(LinkedList<Handle> *graph, int ht, int wt, char* outFile);

};

Class used to create a graph from image file named “inFile” and writing the output to “out-
File”. “writeGraphToImage” takes a linked list of “Handle” objects and produces an image
with all pixels under one “Handle” object colored in one color.

class PAlgo{
PriorityQ<BasicVertex> *Q1, *Q2;
bool initQ1();
bool initQ2();
void updateAdjacent(BasicVertex *u);

29

void grow(Handle *hndl);
short overall();
void segment();

};

Class used to segment image according to P-Algorithm. “Q1” and “Q2” are priority queues
as described in algorithm. The member functions work as described in the algorithm. Func-
tion overall() actually performs the segmentation on the graph and returns the end status.
“segment()” is the actual public interface for using this class, and it hides all the internal
details.

30

Bibliography

[1] S. Chandran and K. K. Madheshia. A fast segmentation algorithm revisited. Proceedings
of ICVGIP, December 2002.

[2] F. R. K. Chung. Lectures on spectral graph theory.

[3] A. Brandt E. Sharon and R. Basri. Fast multiscale image segmentation. Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, 2000.

[4] P. Feleznszwalb and D. Huttenlocher. Image segmentation using local variation. Pro-
ceedings of IEEE conf. Computer Vision and Pattern Recognition, pages 98–104, 1998.

[5] J. Malik and J. Shi. Normalized cuts and image segmentation. Proceedings of IEEE Conf.
Computer Vision and Pattern Recognition, 1997.

[6] J. Malik and J. Shi. Motion segmentation and tracking using normalized cuts. Interna-
tional Conf. on Computer Vision, 1998.

[7] S. Y. Ma S. Y. Chien and L. G. Chen. Efficient moving object recognition algorithm using
background registration technique. IEEE Transactions on Circuits and Systems for Video
Technology, 12, July 2000.

[8] P. Salembier and F. Marques. Region-based representations of image and video: Seg-
mentation tools for multimedia services. IEEE Transactions on Circuits and Systems for
Video Technology, 9(8), December 1999.

[9] D. S. Scott and B. N. Parlett. Laso. http://www.netlib.org/laso/.

[10] O. Veksler. Image segmentation by nested cuts. IEEE Computer Vision and Pattern Recog-
nition, 2000.

[11] Z. Wu and R. Leahy. An optimal graph theoretic algorithm to data clustering: Theory
and its application to image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(11), November 1993.

31

